VOMBAT: prediction of transcription factor binding sites using variable order Bayesian trees
نویسندگان
چکیده
Variable order Markov models and variable order Bayesian trees have been proposed for the recognition of transcription factor binding sites, and it could be demonstrated that they outperform traditional models, such as position weight matrices, Markov models and Bayesian trees. We develop a web server for the recognition of DNA binding sites based on variable order Markov models and variable order Bayesian trees offering the following functionality: (i) given datasets with annotated binding sites and genomic background sequences, variable order Markov models and variable order Bayesian trees can be trained; (ii) given a set of trained models, putative DNA binding sites can be predicted in a given set of genomic sequences and (iii) given a dataset with annotated binding sites and a dataset with genomic background sequences, cross-validation experiments for different model combinations with different parameter settings can be performed. Several of the offered services are computationally demanding, such as genome-wide predictions of DNA binding sites in mammalian genomes or sets of 10(4)-fold cross-validation experiments for different model combinations based on problem-specific data sets. In order to execute these jobs, and in order to serve multiple users at the same time, the web server is attached to a Linux cluster with 150 processors. VOMBAT is available at http://pdw-24.ipk-gatersleben.de:8080/VOMBAT/.
منابع مشابه
Recognition of cis-Regulatory Elements with Vombat
Variable order Markov models and variable order Bayesian trees have been proposed for the recognition of cis-regulatory elements, and it has been demonstrated that they outperform traditional models such as position weight matrices, Markov models, and Bayesian trees for the recognition of binding sites in prokaryotes. Here, we study to which degree variable order models can improve the recognit...
متن کاملIdentification of transcription factor binding sites with variable-order Bayesian networks
MOTIVATION We propose a new class of variable-order Bayesian network (VOBN) models for the identification of transcription factor binding sites (TFBSs). The proposed models generalize the widely used position weight matrix (PWM) models, Markov models and Bayesian network models. In contrast to these models, where for each position a fixed subset of the remaining positions is used to model depen...
متن کاملInhomogeneous Parsimonious Markov Models
We introduce inhomogeneous parsimonious Markov models for modeling statistical patterns in discrete sequences. These models are based on parsimonious context trees, which are a generalization of context trees, and thus generalize variable order Markov models. We follow a Bayesian approach, consisting of structure and parameter learning. Structure learning is a challenging problem due to an over...
متن کاملA continuous-index Bayesian hidden Markov model for prediction of nucleosome positioning in genomic DNA.
Nucleosomes are units of chromatin structure, consisting of DNA sequence wrapped around proteins called "histones." Nucleosomes occur at variable intervals throughout genomic DNA and prevent transcription factor (TF) binding by blocking TF access to the DNA. A map of nucleosomal locations would enable researchers to detect TF binding sites with greater efficiency. Our objective is to construct ...
متن کاملIdentification of DNA regulatory motifs using Bayesian variable selection
MOTIVATION Understanding the mechanisms that determine gene expression regulation is an important and challenging problem. A common approach consists of identifying DNA-binding sites from a collection of co-regulated genes and their nearby non-coding DNA sequences. Here, we consider a regression model that linearly relates gene expression levels to a sequence matching score of nucleotide patter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006